Angiogenesis
Angiogenesis is the formation and remodelling of new blood vessels and capillaries from growth of pre-existing blood vessels. It normally occurs during wound healing and embryonic development, but is also required for tumour growth and metastasis in cancer.
-
Apoptotic, antiproliferative and antiangiogenic agent
2-Methoxyestradiol是一种凋亡,抗增殖和抗血管生成剂。通过两种途径诱导p53诱导的细胞凋亡:p38和NF-κB的激活;和激活JNK和AP-1导致Bcl-2磷酸化。
了解更多
-
HIFα 抑制剂
FM19G11是缺氧诱导因子α(HIFα)的抑制剂,缺氧诱导因子α(HIFα)是一种转录因子,可对细胞环境中可用氧的变化做出响应。
了解更多
-
HIF-2 抑制剂
HIF-C2是一种有效的选择性缺氧诱导因子2(HIF-2)变构抑制剂。
了解更多
-
HIF 抑制剂
BAY 87-2243是低氧诱导基因激活的高效选择性抑制剂,通过抑制线粒体复合体I具有抗肿瘤活性。
了解更多
-
HIF-1alpha 抑制剂
PX-478 HCl是HIF-1alpha抑制剂,也是具有潜在抗肿瘤活性小分子。PX-478对已建立的人类肿瘤异种移植物具有出色的活性,可提供具有HIF-1水平正相关的延长的生长延迟的肿瘤消退。PX-478是高度水溶性的分子,具有良好的i.v.,i.p.和p.o.抗肿瘤活性。
了解更多
-
HIF-PH 抑制剂
Molidustat是一种新型的低氧诱导因子(HIF)脯氨酰羟化酶(PH)抑制剂,可刺激促红细胞生成素(EPO)的产生和红细胞的形成。
了解更多
-
HIF-1α 抑制剂
Hypoxia-inducible factor-1 (HIF-1)是一种转录因子,可控制参与糖酵解,血管生成,迁移和侵袭的基因。棘霉素是HIF-1介导的基因转录的细胞可渗透抑制剂
了解更多
-
HIF-prolyl hydroxylase 抑制剂
FG-2216是一种有效的HIF-脯氨酰羟化酶抑制剂,对PDH2酶的IC50为3.9 uM;生物利用度并在体内诱导显着且可逆的Epo诱导。
了解更多
-
HIF-PHD 抑制剂 II
JNJ-42041935是有效的(pKi = 7.3-7.9),2-氧戊二酸竞争性,可逆和选择性PHD酶抑制剂。
了解更多
-
HIF-prolyl hydroxylase 抑制剂
GSK1278863是新型的HIF-脯氨酰羟化酶抑制剂。
了解更多
-
PKM2 Activator
DASA-58是一种有效的丙酮酸激酶M2(PKM2)活化剂。其中AC90和AC50分别为680 nM,38 nM。
了解更多
-
HIF-2a translation 抑制剂
HIF-2a Translation Inhibitor(IC50值为5 uM);独立于HIF-2a mRNA表达或HIF-2a蛋白稳定性,并独立于mTOR活性,降低常氧和低氧状态下HIF-2a蛋白和HIF-2a目标基因的表达。此外,翻译抑制剂76增强了IRP1与HIF-2a IRE(铁反应元件)的结合。
了解更多
-
HIF-1 抑制剂
LW6是新型HIF-1抑制剂,IC50为4.4 uM。
了解更多
-
HIF prolyl-hydroxylase 抑制剂
Vadadustat,也称为AKB-6548和PG-1016548,是一种有效的缺氧诱导因子脯氨酸双加氧酶抑制剂。
了解更多
-
HIF-1 抑制剂
IDF 11774是一种低氧诱导因子-1(HIF-1)抑制剂。它降低了HIFα-1的HRE荧光素酶活性;(IC50=3.65 μM),并阻断HIF116结肠癌细胞缺氧下的HIFα-1的积累。
了解更多
-
HIF hydroxylase 抑制剂
Desidustat是抗贫血药物的候选药物。它是从专利WO 2014102818 A1,化合物实施例2中提取的HIF羟化酶的抑制剂。
了解更多
-
HIF-2alpha inhibitor
PT2977 is HIF-2alpha inhibitor with an IC50 of 9 nM.
了解更多
-
FLT3 抑制剂
AC220 (Quizartinib)是一种有效的选择性FLT3抑制剂,对于MC4-11和A375,IC50分别为0.56±0.3 nM和> 10 mM。
了解更多
- N Naganna, .et al. Amino alkynylisoquinoline and alkynylnaphthyridine compounds potently inhibit acute myeloid leukemia proliferation in mice, EBioMedicine, 2019, Jan 24. pii: S2352-3964(19)30012-X PMID: 30686755
- Cong Li, .et al. AMG 925 is a dual FLT3/CDK4 inhibitor with the potential to overcome FLT3 inhibitor resistance in acute myeloid leukemia., Mol Cancer Ther., 2015, Feb;14(2):375-83. PMID: 25487917
- Yaping Zhang, .et al. FLT3 and CDK4/6 inhibitors: Signaling mechanisms and tumor burden in subcutaneous and orthotopic mouse models of acute myeloid leukemia, J Pharmacokinet Pharmacodyn., 2014, 41(6): 675-691. PMID: 25326874
-
JAK2/FLT3 抑制剂
Pacritinib (SB1518)是Janus激酶2(JAK2)和JAK2突变体JAK2V617F的口服生物利用抑制剂,无细胞试验中IC50分别为23和22 nM,具有潜在的抗肿瘤活性。Pacritinib与JAK2竞争ATP结合,这可能导致抑制JAK2活化,抑制JAK-STAT信号传导途径以及半胱天冬酶依赖性凋亡。
了解更多
- Daniel Doheny, .et al. Combined inhibition of JAK2-STAT3 and SMO-GLI1/tGLI1 pathways suppresses breast cancer stem cells, tumor growth, and metastasis, Oncogene, 2020, Oct;39(42):6589-6605 PMID: 32929154
-
CSF1/Kit/FLT3 抑制剂
Pexidartinib (PLX3397)是KIT,CSF1R和FLT3的小分子酪氨酸激酶(RTK)抑制剂,具有潜在的抗肿瘤活性。
了解更多
- Lu Luo, .et al. Intermittent theta-burst stimulation improves motor function by inhibiting neuronal pyroptosis and regulating microglial polarization via TLR4/NF κB/NLRP3 signaling pathway in cerebral ischemic mice, J Neuroinflammation, 2022, Jun 11;19(1):141 PMID: 35690810
- Sarah R Anderson,, .et al. Neuronal apoptosis drives remodeling states of microglia and shifts in survival pathway dependence, bioRxiv, 2022, 01.05.475126
- Hannah D Mason, .et al. Glia limitans superficialis oxidation and breakdown promotes cortical cell death after repeat head injury, JCI Insight, 2021, Oct 8;6(19):e149229 PMID: 34428178
- Chritica Lodder, .et al. CSF1R inhibition rescues tau pathology and neurodegeneration in an A/T/N model with combined AD pathologies, while preserving plaque associated microglia, Acta Neuropathol Commun, 2021, Jun 8;9(1):108 PMID: 34103079
- Anderson SR, .et al. Developmental Apoptosis Promotes a Disease-Related Gene Signature and Independence from CSF1R Signaling in Retinal Microglia, Cell Rep, 2019, May 14;27(7):2002-2013.e5 PMID: 31091440
-
Syk 抑制剂
R406 besylate是一种口服酪氨酸激酶抑制剂,IC50为41 nM。对Syk抑制作用强,但是不抑制Lyn,对Flt3的作用比对Syk低5倍。
了解更多
- Gabriella Leung, .et al. ARPC1B binds WASP to control actin polymerization and curtail tonic signaling in B cells, JCI insight, 2021, Dec 8;6(23):e149376 PMID: 34673575
-
FLT3 抑制剂
Tandutinib (MLN518)是一种有效的FLT3抑制剂,c-KIT和PDGF受体酪氨酸激酶的自磷酸化,从而抑制细胞增殖并诱导细胞凋亡。
了解更多
-
JAK2 抑制剂
TG101209是一种新型的JAK2抑制剂,无细胞试验中IC50为6 nM,对Flt3和RET作用效果稍弱,IC50分别为25 nM和17 nM,作用于JAK2比作用于JAK3选择性高30倍左右,对JAK2V617F和MPLW515L/K突变型敏感。在多发性骨髓瘤中具有显着的体外活性,并且对CD45+骨髓瘤细胞显示出优先的细胞毒性。
了解更多
-
PKC 抑制剂
Go6976是一种有效的PKC抑制剂,对PKC(大鼠脑),PKCα和PKCβ1的IC50分别为7.9 nM,2.3 nM和6.2 nM。也是JAK2和Flt3的有效抑制剂。
了解更多
-
FLT3 抑制剂
TCS 359是一种有效的FLT3受体酪氨酸激酶抑制剂(IC50 = 42 nM),对多种其他激酶具有选择性。
了解更多
-
FLT3 抑制剂
TG-02 (SB1317)是一种新型的小分子有效CDK/JAK2/FLT3抑制剂。
了解更多
-
FLT3 抑制剂
G-749是一种新型有效的FLT3抑制剂,对于FLT3(WT),FLT3(D835Y)的IC50为0.4 nM,0.6 nM和1 nM。
了解更多
-
FLT3/Axl 抑制剂
Gilteritinib (ASP2215)是一种有效的FLT3/AXL抑制剂,对具有AML突变或FLT3-ITD和FLT3-D835的AML具有有效的抗白血病活性。
了解更多
- Mohammad Azhar, .et al. Rational polypharmacological targeting of FLT3, JAK2, ABL, and ERK1 suppresses the adaptive resistance to FLT3 inhibitors in AML, Blood Adv, 2022, Aug 31 PMID: 36044389
-
Dual FLT3/CDK4 抑制剂
AMG-925是一种有效,选择性和生物利用性的FLT3/细胞周期蛋白依赖性激酶4(CDK4)双激酶抑制剂。
了解更多
-
RET kinase 抑制剂
AST487是Ret激酶抑制剂/FLT3抑制剂,对Ret的IC50为0.88 uM。
了解更多
-
FLT3 抑制剂
SU5614是有效的选择性FLT3抑制剂。SU5614恢复了FL依赖性细胞中FLT3配体(FL)的抗凋亡和增殖活性。
了解更多
-
Dual MER/FLT3 抑制剂
UNC-2025是一种有效的且可生物利用的双重MER/FLT3抑制剂,IC50分别为0.74 nM和0.8 nM,选择性是Axl和Tyro3的20倍。
了解更多
-
FLT3 抑制剂
BPR1J-097是一种新颖的小分子FLT-3抑制剂,具有良好的体内抗肿瘤活性。
了解更多
-
FLT3 抑制剂
FLT3-IN-1是一种新型的有效选择性Flt3抑制剂,IC50为10 nM。抗表达FLT3-ITD的MV4-11细胞,IC50为6 nM。
了解更多
-
FLT3 抑制剂
FLT3-IN-2是有效的FLT3抑制剂。
了解更多
-
Syk 抑制剂
R406 (Tamatinib)是一种口服酪氨酸激酶抑制剂,IC50为41 nM。对Syk抑制作用强,但是不抑制Lyn,对Flt3的作用比对Syk低5倍。
了解更多
-
JAK2/FLT3 抑制剂
TG-101348 (Fedratinib,SAR302503)是Janus相关激酶2的口服生物利用型,ATP竞争性和选择性抑制剂,在无细胞试验中IC50为3 nM,作用于JAK2比作用于JAK1和JAK3选择性高35和334倍,具有潜在的抗肿瘤活性。
了解更多
-
CDK/JAK2/FLT3 抑制剂
SB1317是细胞周期蛋白依赖性激酶(CDKs)、类FMS酪氨酸激酶-3(FLT3)和Janus激酶2(JAK2)的有效抑制剂,CDK2、JAK2和FLT3的IC50值分别为13nM、56nM和73nM。
了解更多
-
MERTK and FLT3 抑制剂
MRX-2843是MERTK和FLT3的口服小分子抑制剂。
了解更多
-
FLT3 inhibitor
BSc5371 is a potent and irreversible FLT3 inhibitor, with Kds of 1.3, 0.83, 1.5, 5.8 and 2.3 nM for mutant FLT3(D835H), FLT3(ITD, D835V), FLT3(ITD, F691L), FLT3-ITD and wild type FLT3wt, respectively.
了解更多
-
FLT-3 ITD degrader
PROTAC FLT-3 degrader 1 is an FLT-3 internal tandem duplication (ITD) degrader with an IC50 0.6 nM. Anti-proliferative activity; apoptosis induction.
了解更多
-
FLT3 inhibitor
FLT3-IN-4 is a potent and orally effective Fms-like tyrosine receptor kinase 3 (FLT3; IC50=7 nM) inhibitor for treating acute myelogenous leukemia.
了解更多
-
FLT3/CDK inhibitor
FN-1501 is a potent inhibitor of FLT3 and CDK, with IC50s of 2.47, 0.85, 1.96, and 0.28 nM for CDK2/cyclin A, CDK4/cyclin D1, CDK6/cyclin D1 and FLT3, respectively. FN-1501 has anticancer activity.
了解更多
-
FLT3/AXL inhibitor
Gilteritinib hemifumarate is a potent FLT3/AXL inhibitor with IC50 of 0.29 nM/0.73 nM, respectively.
了解更多
-
dual FLT3/Aurora kinase inhibitor
CCT241736 is a potent and orally bioavailable dual FLT3 and Aurora kinase inhibitor.
了解更多
-
FLT3 inhibitor
FLT3-IN-3 is a potent FLT3 inhibitor with IC50s of 13 and 8 nM for FLT3 WT and FLT3 D835Y, respectively.
了解更多
-
SYK/FLT3 inhibitor
TAK-659 is a highly potent, selective, reversible and orally available dual inhibitor of spleen tyrosine kinase (SYK) and fms related tyrosine kinase 3 (FLT3), with an IC50 of 3.2 nM and 4.6 nM for SYK and FLT3, respectively.
了解更多
-
FLT3 inhibitor
5'-Fluoroindirubinoxime (5??-FIO, compound 13), an Indirubin (HY-N0117) derivative, is a potent FLT3 inhibitor, with an IC50 of 15 nM.
了解更多
-
FLT3 inhibitor
HM-43239 is a Novel Potent Small Molecule FLT3 Inhibitor, in Acute Myeloid Leukemia (AML) with FMS-like Tyrosine Kinase 3 (FLT3) Mutations
了解更多
-
TGF-β/ALK5 抑制剂
A 83-01是转化生长因子βI型受体ALK5、淋巴结受体ALK4和淋巴结受体ALK7的选择性抑制剂。
了解更多
- Dan Zhao, .et al. From crypts to enteroids: establishment and characterization of avian intestinal organoids, Poult Sci, 2022, Mar; 101(3): 101642 PMID: 35016046
- Anna Nakanishi, .et al. Effects of human induced pluripotent stem cell-derived intestinal organoids on colitis-model mice, Regen Ther, 2022, Sep 9;21:351-361 PMID: 36161099
- Amira Abugomaa, .et al. Establishment of a direct 2.5D organoid culture model using companion animal cancer tissues, Biomed Pharmacother, 2022, Oct;154:113597 PMID: 36030590
- Isamu Ogawa, .et al. Suspension culture of human induced pluripotent stem cell-derived intestinal organoids using natural polysaccharides, Biomaterials, 2022, Sep;288:121696 PMID: 36038421
- Mohamed Elbadawy, .et al. Anti-tumor effect of trametinib in bladder cancer organoid and the underlying mechanism, Authorea, 2020, October 20
- Daichi Onozato, .et al. Application of Human Induced Pluripotent Stem Cell-Derived Intestinal Organoids as a Model of Epithelial Damage and Fibrosis in Inflammatory Bowel Disease, Biol Pharm Bull, 2020, 43(7), 1088-1095
- Amira Abugomaa, .et al. Establishment of 2.5D Organoid Culture Model Using 3D Bladder Cancer Organoid Culture, Sci Rep, 2020, Jun 10;10(1):9393 PMID: 32523078
- Jing-Yu Lin, .et al. In vitro expansion of pancreatic islet clusters facilitated by hormones and chemicals, Cell Discov, 2020, 6: 20 PMID: 32284878
- Kondo S, .et al. Establishment of a novel culture method for maintaining intestinal stem cells derived from human induced pluripotent stem cells, Biol Open, 2020, Jan 9;9(1) PMID: 31919043
- Onozato D, .et al. Generation of Intestinal Organoids Suitable for Pharmacokinetic Studies from Human Induced Pluripotent Stem Cells, Drug Metab Dispos, 2018, Nov;46(11):1572-1580 PMID: 29615438
- Usui T, .et al. Preparation of Human Primary Colon Tissue-Derived Organoid Using Air Liquid Interface Culture, Curr Protoc Toxicol, 2018, Feb 21;75:22.6.1-22.6.7 PMID: 29512123
- Kondo S, .et al. Using human iPS cell-derived enterocytes as novel in vitro model for the evaluation of human intestinal mucosal damage, Inflamm Res, 2018, Dec;67(11-12):975-984 PMID: 30317465
- Onozato D, .et al. Efficient Generation of Cynomolgus Monkey Induced Pluripotent Stem Cell-Derived Intestinal Organoids with Pharmacokinetic Functions, Stem Cells Dev, 2018, Aug 1;27(15):1033-1045 PMID: 29742964
- Tatsuya Usui, .et al. Hedgehog Signals Mediate Anti-Cancer Drug Resistance in Three-Dimensional Primary Colorectal Cancer Organoid Culture, Int J Mol Sci, 2018, Apr; 19(4): 1098 PMID: 29642386
- Tatsuya Usui, .et al. Establishment of a dog primary prostate cancer organoid using the urine cancer stem cells, Cancer Sci, 2017, Dec; 108(12): 2383-2392 PMID: 29024204
- Tatsuya Usui, .et al. Establishment of a novel three-dimensional primary culture model for hippocampal neurogenesis, Physiol Rep, 2017, Jun; 5(12): e13318 PMID: 28642339
- Tatsuya Usui, .et al. Establishment of a Novel Model for Anticancer Drug Resistance in Three-Dimensional Primary Culture of Tumor Microenvironment, Stem Cells Int, 2016, 2016: 7053872 PMID: 28119740