- 主页 /
- Products On Sale
Products On Sale
-
Caspase inhibitorEmricasan is a first-in-class caspase inhibitor in clinical trials for the treatment of liver diseases. 了解更多
-
Pan Caspase 抑制剂Z-VAD-FMK是一种细胞可渗透、不可逆的泛胱天蛋白酶抑制剂。体外抑制肿瘤细胞caspase加工和凋亡诱导(IC50 = 0.0015 - 5.8 mM)。活跃在体内。 了解更多
- Ming-Chun Hung, .et al. AKT phosphorylation as a predictive biomarker for PI3K/mTOR dual inhibition-induced proteolytic cleavage of mTOR companion proteins in small cell lung cancer, Cell Biosci, 2022, 12: 122 PMID: 35918763
- Kaori Kanemaru, .et al. Plasma membrane phosphatidylinositol (4,5)-bisphosphate is critical for determination of epithelial characteristics, Nat Commun, 2022, May 9;13(1):2347 PMID: 35534464
- Chie Ishikawa, .et al. Exportin-1 is critical for cell proliferation and survival in adult T cell leukemia, Invest New Drugs, 2022, Aug;40(4):718-727 PMID: 35477814
- Aida Falgas, .et al. A diphtheria toxin-based nanoparticle achieves specific cytotoxic effect on CXCR4 + lymphoma cells without toxicity in immunocompromised and immunocompetent mice, Biomed Pharmacother, 2022, Jun;150:112940 PMID: 35421785
- Sumire Suzuki, .et al. Lysosome-targeted drug combination induces multiple organelle dysfunctions and non?canonical death in pancreatic cancer cells, Oncol Rep, 2022, Feb;47(2):40 PMID: 34958115
- Lina Y Abou Zeid, .et al. Caspase-mediated cleavage of miRNA processing proteins Drosha, DGCR8, Dicer, and TRBP2 in heat-shocked cells and its inhibition by HSP70 overexpression, Cell Stress Chaperones, 2022, Jan;27(1):11-25 PMID: 34719748
- Kosar Jabbari, .et al. Protein Ligands in the Secretome of CD36+ Fibroblasts Induce Growth Suppression in a Subset of Breast Cancer Cell Lines, Cancers (Basel), 2021, Sep 8;13(18):4521 PMID: 34572749
- Xiaoyue Deng, .et al. Setd1a Plays Pivotal Roles for the Survival and Proliferation of Retinal Progenitors via Histone Modifications of Uhrf1, Invest Ophthalmol Vis Sci, 2021, May 3;62(6):1 PMID: 33938913
- Liqun Zhao, .et al. Rictor, an essential component of mTOR complex 2, undergoes caspase-mediated cleavage during apoptosis induced by multiple stimuli, Apoptosis, 2021, Apr 27 PMID: 33905036
- Sofia Giacosa, .et al. Cooperative Blockade of CK2 and ATM Kinases Drives Apoptosis in VHL-Deficient Renal Carcinoma Cells through ROS Overproduction, Cancers (Basel), 2021, Feb 2;13(3):576 PMID: 33540838
- Hannes Schmid, .et al. Human invariant natural killer T cells promote tolerance by preferential apoptosis induction of conventional dendritic cells, Haematologica, 2021, Jan 14 PMID: 33440919
- Hua Xu, .et al. Preclinical Study Using ABT263 to Increase Enzalutamide Sensitivity to Suppress Prostate Cancer Progression Via Targeting BCL2/ROS/USP26 Axis Through Altering ARv7 Protein Degradation, Cancers (Basel), 2020, Apr; 12(4): 831 PMID: 32235588
- El-Ashmawy NE, .et al. Modulatory Effect of Silymarin on Apoptosis in Testosterone -Induced Benign Prostatic Hyperplasia in Rats, Pathol Oncol Res, 2020, Jan 4 PMID: 31902118
- Schneider D, .et al. The E3 ubiquitin ligase RNF40 suppresses apoptosis in colorectal cancer cells, Clin Epigenetics, 2019, Jul 2;11(1):98 PMID: 31266541
- Fujiki K, .et al. Blockade of ALK4/5 signaling suppresses cadmium- and erastin-induced cell death in renal proximal tubular epithelial cells via distinct signaling mechanisms, Cell Death Differ, 2019, Feb 25 PMID: 30804470
- T Yamamoto, .et al. Mycoplasma pneumoniae protects infected epithelial cells from hydrogen peroxide-induced cell detachment, Cell Microbiol, 2019, 2019 PMID: 30702185
- Maeda N, .et al. Glucocorticoids potentiate the inhibitory capacity of programmed cell death 1 by up-regulating its expression on T cells, J Biol Chem, 2019, Nov 13. pii: jbc.RA119.010379 PMID: 31723031
- Miyazawa S, .et al. Vitamin K2 induces non-apoptotic cell death along with autophagosome formation in breast cancer cell lines, Breast Cancer, 2019, Oct 17 PMID: 31625014
- Yeh HT, .et al. Flavopereirine induces cell cycle arrest and apoptosis via the AKT/p38 MAPK/ERK1/2 signaling pathway in human breast cancer cells, Eur J Pharmacol, 2019, Sep 10;863:172658 PMID: 31518562
- D. Bosc, .et al. A new quinoline-based chemical probe inhibits the autophagy-related cysteine protease ATG4B, Sci Rep, 2018, 8: 11653 PMID: 30076329
- Tsukamoto H, .et al. Lipopolysaccharide (LPS)-binding protein stimulates CD14-dependent Toll-like receptor 4 internalization and LPS-induced TBK1-IKKε-IRF3 axis activation, J Biol Chem, 2018, Jun 29;293(26):10186-10201 PMID: 29760187
- Hiroshi Kuribayashi, .et al. Roles of Nmnat1 in the survival of retinal progenitors through the regulation of pro-apoptotic gene expression via histone acetylation, Cell Death Dis, 2018, Sep; 9(9): 891 PMID: 30166529
- Matsuo J, .et al. Activation of caspase-3 during Chlamydia trachomatis-induced apoptosis at a late stage, Can J Microbiol, 2018, Oct 18:1-9 PMID: 30336068
- Orly Ravid, .et al. Blood-Brain Barrier Cellular Responses Toward Organophosphates: Natural Compensatory Processes and Exogenous Interventions to Rescue Barrier Properties, Front Cell Neurosci, 2018, 12: 359 PMID: 30459557
- Im E, .et al. Luteolin induces caspase-dependent apoptosis via inhibiting the AKT/osteopontin pathway in human hepatocellular carcinoma SK-Hep-1 cells, Life Sci, 2018, Sep 15;209:259-266 PMID: 30107166
- Szalai P, .et al. Nonlinear relationship between ER Ca2+ depletion versus induction of the unfolded protein response, autophagy inhibition, and cell death, Cell Calcium, 2018, Dec;76:48-61 PMID: 30261424
- Im E, .et al. Dihydroartemisinin induced caspase-dependent apoptosis through inhibiting the specificity protein 1 pathway in hepatocellular carcinoma SK-Hep-1 cells, Life Sci, 2018, Jan 1;192:286-292 PMID: 29128513
- Iriyama N, .et al. The cyclin-dependent kinase 4/6 inhibitor, abemaciclib, exerts dose-dependent cytostatic and cytocidal effects and induces autophagy in multiple myeloma cells, Leuk Lymphoma, 2018, Jun;59(6):1439-1450 PMID: 28918692
- Birte Plitzko, .et al. The natural product mensacarcin induces mitochondrial toxicity and apoptosis in melanoma cells, J Biol Chem, 2017, Dec 22; 292(51): 21102-21116 PMID: 29074620
- Akashi E, .et al. Effects of galectin-9 on apoptosis, cell cycle and autophagy in human esophageal adenocarcinoma cells, Oncol Rep, 2017, Jul;38(1):506-514 PMID: 28586026
Adooq Bioscience
Toll Free: (866) 930-6790
Fax: +1-323-606-8156
Email: sales@adooq.com
Not your Region? View all Distributors
Molecular Weight Calculator
Enter the chemical formula of a compound to calculate its molar mass and elemental composition:
Instructions to calculate molar mass (molecular weight) of a chemical compound:
To calculate molar mass of a chemical compound, please enter its chemical formula and click 'Calculate'.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
Molecular mass (molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
Dilution Calculator
Calculate the dilution required to prepare a stock solution
The Adooq dilution calculator is a useful tool which allows you to calculate how to dilute a stock solution of known concentration. Enter C1, C2 & V2 to calculate V1.
The dilution calculator equation
The Adooq dilution calculator is based on the following equation:
Concentration(start) x Volume(start) = Concentration(final) x Volume(final)
This equation is commonly abbreviated as: C1V1 = C2V2
An example of a dilution calculation using the Adooq dilution calculator
What volume of a given 10 mM stock solution is required to make 20ml of a 50 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=50 μM, V2=20 ml and V1 is the unknown:
- Enter 10 into the Concentration (start) box and select the correct unit (millimolar)
- Enter 50 into the Concentration (final) box and select the correct unit (micromolar)
- Enter 20 into the Volume (final) box and select the correct unit (milliliter)
- Press calculate
- The answer of 100 microliter (0.1 ml) appears in the Volume (start) box
Molarity Calculator
Calculate the mass, volume or concentration required for a solution
The Adooq molarity calculator is a useful tool which allows you to calculate the:
- mass of a compound required to prepare a solution of known volume and concentration
- volume of solution required to dissolve a compound of known mass to a desired concentration
- concentration of a solution resulting from a known mass of compound in a specific volume
The molarity calculator equation
The Adooq molarity calculator is based on the following equation:
Mass (g) = Concentration (mol/L) x Volume (L) x Molecular Weight (g/mol)
An example of a molarity calculation using the Adooq molarity calculator
What is the mass of compound required to make a 10 mM stock solution in 10 ml of water given that the molecular weight of the compound is 197.13 g/mol?
- Enter 197.13 into the Molecular Weight (MW) box
- Enter 10 into the Concentration box and select the correct unit (millimolar)
- Enter 10 into the Volume box and select the correct unit (milliliter)
- Press calculate
- The answer of 19.713 mg appears in the Mass box
We promise all products to perform as described.